| Write your name here Surname | Other na | imes | |--|---------------|--------------------------| | Edexcel GCE | Centre Number | Candidate Number | | Chemistr
Advanced
Unit 6B: Chemistry | | II Alternative | | Tuesday 22 May 2012 – N Time: 1 hour 15 minute | • | Paper Reference 6CH08/01 | | | | 001100/01 | # **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. # Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. P 3 9 3 1 1 A 0 1 1 6 Turn over ▶ 7/7/5/5/ # Answer ALL the questions. Write your answers in the spaces provided. 1 (a) The colours of aqueous solutions containing chromium(III) chloride and nickel(II) chloride are similar. | What | colour | are these | solution | 9 | |--------|---------|-----------|----------|-----| | vv Hat | COIOIII | are mese | SOILLION | S ! | (1) (b) Tests were carried out on a dilute aqueous solution of chromium(III) chloride. Complete the table below. You may use either names or formulae unless only one of these is specified. | | Test | Observations | Inferences | | |-------|--|----------------------|--|-----| | (i) | Add a few drops of dilute sodium hydroxide solution to the chromium(III) chloride solution. | A precipitate forms. | The precipitate is | (1) | | (ii) | Add dilute sodium hydroxide to the mixture made in (i), until the sodium hydroxide is present in excess. | | The complex ion [Cr(OH) ₆] ³⁻ forms. | (1) | | (iii) | Add a few drops of dilute ammonia to another sample of the chromium(III) chloride solution. | | The substance containing chromium which is observed on adding the ammonia is | | | | | | | (2) | | | Test | Observations | Inferences | | |------|--|---|---|-----| | (iv) | Continue to add dilute ammonia to the mixture in (iii) until the ammonia is present in excess. | A solution forms. | The formula of the chromium containing ion in the solution is | (1) | | (v) | Warm another sample of the chromium(III) chloride solution with alkaline hydrogen peroxide solution, which acts as an oxidizing agent. | A yellow solution forms. | The formula of the ion causing the yellow colour is | (1) | | | Add sulfuric acid to the resulting mixture. | The solution goes orange when sulfuric acid is added. | The ion causing the orange colour is dichromate(VI), $Cr_2O_7^{2-}$. | | (c) Tests (i) and (ii) above were repeated on an aqueous solution of nickel(II) chloride. In what way, other than any difference in colour, does the reaction of dilute sodium hydroxide solution with nickel(II) chloride differ from its reactions with chromium(III) chloride? (1) (Total for Question 1 = 8 marks) | 2 This question is about some reactions of phenol and cyclohexanol. | | |--|--------| | — ОН | | | phenol cyclohexanol | | | (a) Give two observations you would make when bromine water is added, drop by | drop, | | to an aqueous solution of phenol. | (2) | | (b) (i) What is observed when cyclohexanol is warmed with a mixture of aqueou potassium dichromate(VI) and sulfuric acid? | S | | r | (1) | | (ii) Give the skeletal formula of the organic product of the reaction in (b)(i). | (1) | | (iii) What change, if any, is observed when the organic product of the reaction (b)(i) is mixed with the following reagents? | in (2) | | 2,4-dinitrophenylhydrazine solution | | | Tollens' reagent | | | (c) Both phenol and cyclohexanol react with ethanoyl chloride to produce steamy and an ester. Phenol behaves like an alcohol in this reaction. | fumes | | (i) How could you show that the steamy fumes were due to the presence of a hydrogen halide, which in this case is hydrogen chloride? | | | nydrogen nande, which in this case is nydrogen emoride: | (2) | | | | | | | (ii) The infrared spectrum below is for the ester produced in the reaction of ethanoyl chloride with phenol. | Bond | Group | Wavenumber range / cm ⁻¹ | |------|-------------------------|---| | С—Н | alkanes | 2962 – 2853 | | | arenes | 3030 | | О—Н | alcohols and phenols | 3750 – 3200 | | С—О | ethanoates
benzoates | 1250 – 1190
1310 – 1250
and 1150 – 1100 | | C=C | arenes | 1600, 1580, 1500,
1450 | | C=O | ketones | 1700 – 1680
1770 – 1715 | Identify the bond and group which cause each of the absorptions X and Y. | | 1. | - | | ` | | |-----|----|---|---|----|--| | - / | | 7 | , | ٦ | | | | | / | | -1 | | | | | | | | | | X | |
 | | |---|--|------|--| | | | | | Y | (iii) Draw the structural formula of the ester produced in the | ne reaction of ethanoyl | |--|----------------------------| | chloride with phenol. | (1) | (Total | for Question 2 = 11 marks) | 3 Some old coins with a high copper content were analysed as follows. # **Procedure** - 1. The coins were weighed and dissolved in concentrated nitric acid, producing a solution which contained copper(II) nitrate. - 2. The solution containing copper(II) nitrate was neutralized by adding sodium carbonate solution until a precipitate of copper(II) carbonate just appeared. Dilute ethanoic acid was then added, drop by drop, until the copper(II) carbonate precipitate just dissolved. - 3. The solution containing copper(II) nitrate was transferred to a volumetric flask and made up to 250 cm³ with distilled water. - 4. 25 cm^3 portions of this solution were transferred to separate conical flasks. Then 10 cm^3 of 1.0 mol dm^{-3} potassium iodide (an excess) was added to each flask. - 5. The liberated iodine was titrated with 0.125 mol dm⁻³ sodium thiosulfate solution. - (a) One reason why the solution for titration must be neutralized is because sodium thiosulfate reacts with acid as shown below. $$S_2O_3^{2-} + 2H^+ \rightarrow S + SO_2 + H_2O$$ State **one** observation you would make when an acid reacts with sodium thiosulfate solution. (1) (b) (i) What colour is the diluted solution containing copper(II) nitrate? (1) (ii) What would you observe in Step 2, before the formation of the copper(II) carbonate precipitate, when the sodium carbonate was added? (1) (c) The equation for the reaction producing iodine in Step 4 is shown below. $$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2}(aq)$$ (i) Give the name of the precipitate formed in this reaction. (1) (ii) Suggest, by considering the electronic configuration of the relevant ion, why the precipitate is white. (1) (d) The equation for the reaction of thiosulfate ions in the titration is $$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$ **Results:** | Mass of coins | 2.10 g | |--|-----------------------| | Mean (average) volume of 0.125 mol dm ⁻³ sodium thiosulfate used in titration | 24.40 cm ³ | (i) Calculate the number of moles of sodium thiosulfate used in the titration. (1) (ii) Calculate the number of moles of Cu²⁺ in the 25 cm³ samples used for the titration. (2) | (iii) Hence calculate the mass of copper present in the original mass of coins. | (2) | |--|------| | (iv) What is the percentage of copper in the coins? | (1) | | (e) (i) The balance used to weigh the coins produced a total error in the weighing of ±0.01 g. Calculate the percentage error in the weighing. | (1) | | (ii) The error in the mean titre of $24.40\mathrm{cm^3}$ was $\pm0.10\mathrm{cm^3}$. Show, by calculation, that the percentage error in the titration reading is less than the percentage error in the balance reading. | (1) | | (f) Starch solution can be used to show the end point for this titration, or the titration can be self-indicating.What colour change would be observed at the end point if starch was not used? | (1) | | (Total for Question 3 = 14 ma | rks) | 4 A student attempted to make a sample of methyl 3-nitrobenzoate using the following reaction. COOCH₃ $$+ \text{HNO}_3 \rightarrow \qquad + \text{H}_2\text{O}$$ $$NO_2$$ methyl benzoate methyl 3-nitrobenzoate ## **Procedure** - 1. Transfer 9 cm³ of concentrated sulfuric acid into a 100 cm³ conical flask and cool it to below 10 °C in an ice bath. Add 5.0 g of methyl benzoate, swirling the flask. Mix 3 cm³ of concentrated nitric acid with 3 cm³ of concentrated sulfuric acid in another small flask and cool it in ice. - 2. Add the mixture of nitric and sulfuric acids, drop by drop, to the methyl benzoate solution, making sure that the temperature stays below 15 °C. - 3. Take the mixture out of the ice bath and leave it to stand for 10 minutes at room temperature. Pour the mixture over 40 g of crushed ice and collect the solid product by filtering the mixture under suction. Wash the precipitate, first with cold water, then with ice-cold ethanol. Keep the washings obtained with the ethanol for a further experiment. - 4. Purify the impure methyl 3-nitrobenzoate by recrystallization, using ethanol as the solvent, cooling the solution in an ice bath to assist recrystallization. - 5. Dry the recrystallized product and determine the yield. - (a) The student wore goggles and a laboratory coat. For each of the processes below, state the hazard and give one further safety precaution which should be taken. - (i) Working with concentrated nitric and sulfuric acids. (1) (ii) Carrying out the recrystallization using ethanol. (1) | | | (1) | |--------|--|--------| | c) (i) | Calculate the number of moles in 5.0 g of methyl benzoate. Assume the molar mass of methyl benzoate is 136 g mol ⁻¹ . | (1) | | (ii) | Methyl benzoate is a liquid at room temperature. What is the volume of $5.0~\rm g$ methyl benzoate? The density of methyl benzoate is $1.09~\rm g~cm^{-3}$. | of (1) | | (iii) | After recrystallization and drying, 3.4 g of methyl 3-nitrobenzoate was obtained Calculate the percentage yield of methyl 3-nitrobenzoate, assuming that an excess of nitric and sulfuric acids was present. | d. (3) | | forr
was | e reason for the low yield in this experiment is that methyl 2-nitrobenzoate is also ned. This compound dissolves in ethanol and would be present in the ethanol things from step 3 . Methyl 2-nitrobenzoate and methyl 3-nitrobenzoate are both e yellow. |) | |-------------|---|-----| | (i) | Describe how to make a chromatogram with the ethanol washings from step 3 in order to separate methyl 2-nitrobenzoate and methyl 3-nitrobenzoate. The chromatogram can be made on a plate covered with a layer of silica, and you may assume that a suitable solvent is available. | (4) | | | | (4) | | | | | | | | | | (ii) | How would you improve the chromatogram to confirm that both | | | | methyl 2-nitrobenzoate and methyl 3-nitrobenzoate are present in the washings? You may show this on a diagram if you prefer. | (1) | | | | | | | | | | | | | | | | | (e) The table below gives data about the solubility of methyl 3-nitrobenzoate in two solvents. This data may be used to select the best solvent for recrystallization. | | Solubility of methyl 3-nitrobenzoate / g per 100 g solvent | | | | | | | | | |------------------|--|-----------|--|--|--|--|--|--|--| | Temperature / °C | Solvent 1 | Solvent 2 | | | | | | | | | 10 | 6.0 | 2.0 | | | | | | | | | 70 | 11.0 | 9.5 | | | | | | | | | (i) | Explain why using Solvent 1, rather than Solvent 2, would lead to a lower yield | |-----|---| | | of recrystallized methyl 3-nitrobenzoate. | (1) (ii) 50 g of Solvent 2 was saturated with methyl 3-nitrobenzoate at 70 °C, and the solution was then cooled to 10 °C. Calculate the mass of methyl 3-nitrobenzoate crystals which would be obtained. (1) (f) What method, other than spectroscopy or chromatography, could be used to assess the purity of the methyl 3-nitrobenzoate? How would the result of the experiment indicate if it was pure? **(2)** (Total for Question 4 = 17 marks) **TOTAL FOR PAPER = 50 MARKS** # The Periodic Table of Elements | | | | | | | Т | | _ | | | | | | | 1 | | | |-------|---|------------------------------------|--------------------------------|------|------------------------------|------|----|--------------------------------------|-------|----------|-----------------------------|-------|----------|-----------------|-------|---|-------------------------------| | 0 (8) | (78)
4.0
He
helium
2 | 20.2
Ne | neon
10 | 39.9 | Ar
argon
18 | 83.8 | Դ | krypton
36 | 131.3 | Xe | xenon
54 | [222] | R | radon
86 | | ted | | | 7 | (17) | 19.0
F | fluorine
9 | 35.5 | Cl
chlorine
17 | 79.9 | Br | bromine
35 | 126.9 | <u>-</u> | odine
53 | [210] | Αt | astatine
85 | | oeen repor | | | 9 | (16) | 16.0
O | oxygen
8 | 32.1 | S
sulfur
16 | 79.0 | Se | selenium
34 | 127.6 | Je. | tellurium
52 | [509] | Ъ | polonium
84 | | 116 have I | ıticated | | 2 | (15) | 14.0
Z | nitrogen
7 | 31.0 | P
phosphorus
15 | 74.9 | As | arsenic
33 | 121.8 | Sb | antimony
51 | 209.0 | Bi | bismuth
83 | | nbers 112- | but not fully authenticated | | 4 | (14) | 12.0
C | carbon
6 | 28.1 | Silicon
14 | 72.6 | g | germanium
32 | 118.7 | Sn | ti
20 | 207.2 | Ъ | lead
82 | | atomic nur | but not fi | | m | (13) | 10.8
B | boron
5 | 27.0 | Al
aluminium
13 | 69.7 | Ga | gallium
31 | 114.8 | 드 | indium
49 | 204.4 | F | thallium
81 | | Elements with atomic numbers 112-116 have been reported | | | | | | | | (12) | 65.4 | Zu | zinc
30 | 112.4 | <u>В</u> | cadmium
48 | 200.6 | Η̈́ | mercury
80 | | Elem | | | | | | | | (11) | 63.5 | J | copper
29 | 107.9 | Ag | silver
47 | 197.0 | PΠ | gold
79 | [272] | Rg | oentgenium
111 | | | | | | | (10) | 58.7 | ï | nickel
28 | 106.4 | Pd | palladium
46 | 195.1 | ¥ | platinum
78 | [271] | Mt Ds Rg | darmstadtium r
110 | | | | | | | (6) | 58.9 | ပိ | cobalt
27 | 102.9 | 윤 | rhodium
45 | 192.2 | <u>-</u> | iridium
77 | [368] | ₩ | neitnerium
109 | | | 1.0 H hydrogen | | | | (8) | 55.8 | Fe | iron
26 | 101.1 | Ru. | ruthenium
44 | 190.2 | Os | osmium
76 | l_ | | hassium
108 | | | | | | | (2) | 54.9 | ۸n | manganese
25 | [86] | | | 186.2 | Re | rhenium
75 | [564] | 絽 | bohrium
107 | | | | mass | umber | | (9) | 52.0 | ე | vanadium chromium manganese 23 24 25 | 95.9 | Wo | molybdenum technetium 42 43 | 183.8 | > | tungsten
74 | [596] | Sg | n dubnium seaborgium bo | | | Key | relative atomic mass atomic symbol | name
atomic (proton) number | | (5) | 50.9 | > | vanadium
23 | 92.9 | | niobium
41 | 180.9 | Тa | tantalum
73 | [292] | Pp
Dp | dubnium
105 | | | | relati
ato | atomic | | (4) | 47.9 | ï | titanium
22 | 91.2 | Zr | zirconium
40 | 178.5 | Ŧ | hafnium
72 | _ | ¥ | actinium rutherfordium 89 104 | | | | | | | (3) | 45.0 | Sc | scandium
21 | 88.9 | > | yttrium
39 | 138.9 | La* | lanthanum
57 | [227] | Ac* | actinium
89 | | 2 | (2) | 9.0
Be | beryllium
4 | 24.3 | Mg
magnesium
12 | 40.1 | S | calcium
20 | 97.8 | Sr | strontium
38 | 137.3 | | barium
56 | [326] | Ra | radium
88 | | - | (1) | 6.9
Li | lithium
3 | 23.0 | Na
sodium
11 | 39.1 | ¥ | potassium
19 | 85.5 | S. | rubidium
37 | 132.9 | ပ | caesium
55 | [223] | Ŧ | francium
87 | mendelevium 169 Tm thulium 69 167 Er erbium 68 fermium [253] **Fm** [254] **Es**einsteinium 165 **Ho** holmium 67 163 **Dy** dysprosium Cf Cf californium 98 99 159 **Tb** terbium 65 [245] **BK**berkelium 97 157 **Gd** gadolinium [247] **Cm** aurium 4 152 **Eu** europium 63 americium Am [243] [237] [242] Np Pu neptunium plutonium a samarium 150 **Sm** 62 Pm promethium s 144 Nd neodymium uranium 9 Pr Pr praseodymium 59 rotactinium [231] **Pa** Ce cerium 58 232 Th thorium 90 > * Lanthanide series * Actinide series **Lu** lutetium Yb ytterbium 70 103 101 100 66 96 94 93 92 91 nobelium 102